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Can whole brain nerve conduction velocity be derived from
surface-recorded visual evoked potentials?

A re-examination of Reed, Vernon, and Johnson (2004)

Dave Saint-Amoura, Clifford D. Saronb, Charles E. Schroederc,d, John J. Foxea,d,∗
a The Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, Program in Cognitive Neuroscience

and Schizophrenia, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
b Center for Mind and Brain, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

c Cognitive Neuroscience and Neuroimaging Laboratory, Nathan S. Kline Institute for Psychiatric Research, Program in Cognitive
Neuroscience and Schizophrenia, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA

d Program in Cognitive Neuroscience, Department of Psychology, The City College of the City University of New York,
North Academic Complex, 138th St. & Convent Avenue New York, NY 10031, USA

Received 5 November 2004; received in revised form 11 February 2005; accepted 28 February 2005
Available online 24 March 2005

A

elocity in
n to the
p n-to-inion
d se metrics
a g hierarchy
d retations of
t
©

K

c
d
s
t
p
(
i
m
i
a
o

t. In
d in
faster

r the
the
100
sion
n’s
tical
must
way
for
time

, we

0
d

bstract

Reed, Vernon, and Johnson [Reed, T. E., Vernon, P. A., & Johnson, A. M. (2004). Sex difference in brain nerve conduction v
ormal humans.Neuropsychologia, 42, 1709–1714] reported that “nerve conduction velocity” (NCV) of visual transmission from retina
rimary visual area (V1) is significantly faster in males than females. The authors estimated the NCV by dividing head length (nasio
istance) by the latency of the well-known P100 component of the visual evoked potential (VEP). Here, we critically examine the
nd we contend that knowledge of the underlying physiology of neural transmission across the initial stages of the visual processin
ictates that a number of their assumptions cannot be reasonably upheld. Alternative, and we believe, more parsimonious interp

he data are also proposed.
2005 Elsevier Ltd. All rights reserved.
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This paper evaluatesReed, Vernon, & Johnson (2004)re-
ent contention that there are sex-differences in neural con-
uctivity within the human brain. These authors, using the vi-
ual evoked potential (VEP) method, an especially powerful
ool for assessing functionality and integrity within the visual
rocessing pathways, report that “nerve conduction velocity”
NCV) of visual inputs from retina to primary visual cortex
s significantly faster in males than females. As their primary

etric, they estimated speed of neural transmission by divid-
ng head length (i.e. the sagittal distance between the nasion
nd inion) by the latency of the well-known P100 component
f the VEP, a robust positive-going waveform that emerges

∗ Corresponding author. Tel.: +1 845 398 6547; fax: +1 845 398 6545.
E-mail address: foxe@nki.rfmh.org (J.J. Foxe).

over occipital scalp at about 100 ms after stimulus onse
addition, Reed et al. claim that the faster NCVs foun
males are in accordance with the fact that males have
reaction times (RT) across a variety of tasks.

Three major conditions need to be satisfied to allow fo
determination of the retino-thalamo-cortical NCV from
VEP according to the methods of Reed et al. First, the P
peak latency must correspond directly to the transmis
time from the retina to the primary visual cortex (Brodman
area 17 or V1), excluding delays related to retinal and cor
integration. Second, the processing represented by P100
be generated solely in area V1. Third, the physical path
length from the optic nerve head to V1 must be known
each subject, and used with that subject’s conduction
measurements to calculate that subject’s “NCV.” Here

028-3932/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
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critically examine these conditions based on the extant lit-
erature and the metrics used by the authors according to the
following points: (1) the timing of visual transmission; (2)
the sources of the VEP components; (3) the different stages
(“compartments”) of visual processing from retina to cor-
tex; (4) the putative correlation between VEP and reaction
time; (5) alternative explanations and conclusions. We con-
tend that knowledge of the underlying physiology of neural
transmission across the initial stages of the visual processing
hierarchy dictates that a number of the assumptions made by
Reed et al. cannot be upheld.

1. Information flow through the visual system

Reed et al. contend that it takes about 50 ms for infor-
mation to reach thalamus from the retina and that another
50 ms is accounted for by flow through the optic radiations.
The assumption that 100 ms is a realistic timeframe for
transmission of inputs from retina to cortex, and implicitly
that P100 represents the initial input to primary visual
cortex is simply not supported by the literature. In fact,
it is remarkable just how much processing the brain can
actually achieve in just the first 100 ms of activity after visual
stimulus onset. This includes, for example, figure-ground
segregation within the visual system (Bach & Meigen,
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with less than 15 ms lag from the initial activation of V1.
For example, inputs to the intraparietal sulcus occur at an
average onset latency of 28 ms with the earliest inputs seen
even earlier (22 ms).

Human scalp-recordings indicate similar conclusions. Of
course, latencies in the human are somewhat longer than
those in a macaque, but a scaling factor of 3/5 is quite re-
liable to draw correspondence between human and monkey
component latencies (Schroeder, Molholm, Lakatos, Ritter,
& Foxe, 2004). Regions of the human frontal cortex are ac-
tivated by visual stimuli within just 30–40 ms of initial V1
activation, which begins by 40–50 ms after stimulus onset
(Clark & Hillyard, 1996; Foxe & Simpson, 2002; Saron,
Schroeder, Foxe, & Vaughan, 2001). For example,Foxe &
Simpson (2002)showed stimulus-driven frontal activity at
just 85 ms and intracranial recordings in epileptic patients
showed quite similar timing (Blanke et al., 1999). From the
above brief overview of timing information derived directly
from monkey and human recordings, it is absolutely clear that
a component peak at 100 ms cannot represent anything ap-
proximating the initial input to primary visual cortex. Indeed,
this is some 50–60 ms later than the initial afferent input.

2. Input to primary visual cortex is indexed by the
onset of the “C1” component
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998; Lamme, 1995; Murray et al., 2002), binocular integra
ion (Fukai, 1985; Regan & Spekreijse, 1970; Saint-Amour
epore, Lassonde, & Guillemot, 2004), substantial cortica

nteraction between visual and other sensory modalities (Fort,
elpuech, Pernier, & Giard, 2002; Giard & Peronnet, 1999;
olholm et al., 2002; Schroeder & Foxe, 2002; Schroeder
indsley, et al., 2001; Schroeder, Mehta, et al., 2001), inte-
ration of visual information across both hemifields (Murray,
oxe, Higgins, Javitt, & Schroeder, 2001) and even th

nitiation of motor output activity (∼105 ms) associated wi
ast RTs (Saron, Foxe, Simpson, et al., 2003). Intracrania
ecordings in awake macaques show that latencies for
arvocellar and magnocellular retinal inputs to the thala
elay nucleus, the lateral geniculate nucleus (LGN), a
he range of 13–18 ms (Schroeder, Mehta, et al., 2001). In
act, less than 30 ms are necessary for retinal inputs to
he primary visual cortex (Givre, Schroeder, & Arezzo, 199;
aunsell & Gibson, 1992; Schroeder, Mehta, & Givre, 199;
chroeder, Tenke, Givre, Arezzo, & Vaughan, 1990, 19),
lthough the fastest magnocellular inputs to V1 can be se
arly as 15–20 ms post-stimulation. The visual system,

he primary visual cortex to high-level extrastriate area
he infero-temporal (IT) cortex, becomes activated within
0 ms of the initial afferent input to area V1 (Mehta, Ulbert, &
chroeder, 2000a, 2000b; Schroeder et al., 1998; Schroeder
ehta, et al., 2001; seeLamme & Roelfsema, 2000for a

xhaustive review of the VEP latencies in macaque).
orsal visual stream activation, by virtue of its domin
agnocellular input, is even faster than the ventral str

o that essentially the entire parietal pathway is activ
Typical checkerboard VEPs are characterized by a dis
egative component preceding P100, often called the
r the N75. Surprisingly, Reed et al. do not describe
omponent and do not show any waveforms in their re
et, the description of the N70/N75 could be helpful for

nterpretation of the data since the onset of this compo
s certainly more directly related to the transmission t
etween retina and V1 than the P100.Jeffreys & Axford
1972a)are credited with first describing this componen
he flash-pattern VEP, which they termed the C1. Depen
n stimulus parameters, this component onsets betwe
nd 70 ms and peaks considerably before 100 ms. Be
1 reverses in polarity if the stimulation is presented in
pper or in the lower visual field, they suggested that only
nique hardwired retino-topic organisation of the calca
ssure (striate cortex) could account for the origin of the
Butler et al., 1987; Clark, Fan, & Hillyard, 1995; Jeffreys &
xford, 1972a, 1972b; Mangun, 1995; Simpson, Foxe et a
995; Tzelepi, Ioannides, & Poghosyan, 2001). Although

he origin of neural generators of the early components o
EP is not yet fully understood and we still have only a ra
asic knowledge of the nature of processing that is occu
ver successive epochs, there is a general consensus
uman literature that the initial C1 component repres
triate cortex activity. The generation of the correspon
omponent in monkeys further supports this hypothesis
eed, the N40 for flash VEP and N50 for pattern VEP re
xcitatory post-synaptic potentials of stellate cells in prim
isual cortex layer 4C driven directly by the primary tha
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mic afferents (Givre, Arezzo, & Schroeder, 1995; Givre et
al., 1994; Schroeder et al., 1998, 1991). On the other hand,
several studies in humans have shown that the ensuing P1
(peaking between approximately 90–130 ms) and N1 compo-
nents (a negative component peaking between approximately
130 and 180 ms) represent subsequent extrastriate activation
(Clark et al., 1995; Clark & Hillyard, 1996; Di Russo,
Martinez, Sereno, Pitzalis, & Hillyard, 2001; Foxe, Murray,
& Javitt, in press; Gomez Gonzalez, Clark, Fan, Luck, &
Hillyard, 1994; Heinze et al., 1994). As proposed byFoxe
& Simpson (2002), the “early” ERP components such as
P1 and N1 are likely to reflect relatively late processing
involving top–down influences from parietal and frontal
regions after the initial volley of sensory afference through
the visual system.

The C1 (or the N70/N75) is therefore the best estimate of
the onset of the initial response in human V1. Despite this, the
estimation of the latency of the C1 (or any other component)
can be equivocal because the generation of the component
starts before the waveform “peak”, which is commonly used
as a latency point of reference. The use of the C1 peak is, in
fact, highly likely to overestimate the time needed for retinal
inputs to reach V1. Although the C1 is associated with the
activation of striate cortex, it has been proposed that only
the initial portion of the C1 component (the first 10–15 ms)
is likely to represent predominantly V1 activity. Given the
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3. Necessity of “compartmentalizing” in derivation
of a brain NCV measurement

Using the peripheral NCV as a conceptual model is inap-
propriate. The computation of a median nerve CV, for exam-
ple, involves two measurements. The first is the conduction
time from the stimulation point at the wrist to the onset of
the compound action potential response at a more proximal
location (e.g. the elbow or at Erb’s point). The second is the
length of the pathway from the wrist to the measuring point
in the popliteal fossa or brachial plexus (easily indexed with a
tape measure). On the other hand, there are at least five “com-
partments” that contribute to the latency of a V1 response:
(1) retinal integration time (receptor depolarization, intrareti-
nal conduction, ganglion cell integration and discharge); (2)
conduction time from the optic nerve head (the point at which
most ganglion cells are myelinated) to the lateral geniculate
nucleus, which corresponds to the empirical NCV, i.e. the
real conduction time over the real distance; (3) peri-synaptic
time in the lateral geniculate nucleus (retino-geniculate axon
terminal invasion time, synaptic delay, post-synaptic integra-
tion time); (4) conduction time in the optic radiations (NCV
plus distance); (5) Peri-synaptic time in V1. Direct study of
the first three compartments in non-human animal subjects
(Schroeder, Salinger, & Garraghty, 1986) illustrates both the
difficulty of accurate reliable measurements, and the neces-
s
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iming described above, the latter portion of the C1 wavef
lmost certainly reflects extrastriate processing as well (Foxe
Simpson, 2002).
Although the neural generators of the pattern-onset

ave been repeatedly modelled based on combined func
agnetic resonance imaging (fMRI) and source-modellin
igh-density scalp-recordings (e.g.Clark et al., 1995; Clark et
l., 1996;Di Russo et al., 2001; Gomez Gonzalez et al., 1
einze et al., 1994; Simpson, Foxe, et al., 1995; Simpson
flieger et al., 1995), it was only very recently that these te
iques were applied to the pattern-reversal VEP (Di Russo
t al., 2005). As expected, these authors found a V1 so

or the N70/N75 component, which almost certainly co
ponds to the C1 component. They also found both s
nd extrastriate generators during the timeframe of the
triate cortex has been implicated as one of the active g
tors during the pattern-reversal P1 by many authors
iersdorf, 1987; Bonmassar et al., 2001; Brecelj, Kakigi,
oyama, & Hoshiyama, 1998; Hoeppner, Bergen,
orrell, 1984; Nakamura, Kakigi, Okusa, Hoshiyama,
atanabe, 2000), but a considerable number of studies h

lso found extrastriate generators (V2–V3–V4) to be m
rominent during the P1 (Lehmann, Darcey, & Skrandie
982; Onofrj et al., 1993; Onofrj, Fulgente, Thoma
uratola, et al., 1995; Onofrj, Fulgente, Thomas, Malates
t al., 1995; Schroeder et al., 1995; Vanni, Tanskanen, Sepp
utela, & Hari, 2001). As such, it appears clear that both s
te and extrastriate generators contribute to the P1, wh

he preceding component (N70/N75 or C1) is a better in
f early V1 activation.
ity of obtaining them.
As discussed above, the examination in humans o

ime required for subcortical visual processing can be
omplished, in a gross sense, using C1 onset. Getting be
his stage, that is determining how the various post-retin
ments of the primary visual pathways contribute to con

ion/processing time in the pre-cortical portion of the p
ay, will be difficult. The effort must first acknowledge t
otential sources of variance in the measure (i.e. the com
ents). Once this is done, the magnitude of the task bec
pparent. For example, we already know that retinal pro

ng time accounts for the bulk of time involved in corti
nset latency (Schroeder, Tenke, Arezzo, & Vaughan, 19;
chroeder et al., 1986), and even isolating this compartm

equires deriving a valid and reliable non-invasive inde
he onset of retinal output, and this is a non-trivial probl
solating the other compartments with non-invasive meth
s, at present, impractical. As such, macroscopic mea

ents of visual processing (scalp-recording over Oz)
etino-geniculate pathway (nasion-to-inion distance) m
he assessment of brain NCV impossible.

. Correlations between VEP components and
eaction time

On the other hand, one can question the interpret
rom Reed et al. regarding RT and visual transmission t
ince males showed faster reaction times, they conc

hat such performance should be related to their faster N
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This RT conclusion is, again, based on indirect evidence.
To claim such a relationship, the authors should minimally
have demonstrated a correlation between the VEP latency
(or the ‘NCV’) and RT; they did not. In fact, the exis-
tence of such correlation is unlikely. The stimulation used
by Reed et al. to test RT (Cognometer battery testTM) was
different from those used for their VEPs (checkerboard), and
both measures were not performed simultaneously. Studies,
which have compared the VEP and motor RT, suggest that
their relationship varies depending on the stimulus param-
eters (Baedeker & Wolf, 1987; Hartwell & Cowan, 1993;
Musselwhite & Jeffreys, 1985). While a linear relationship
between the VEP and RT is possible for contrast variation
(Hartwell & Cowan, 1993) only partial or no correspondence
has been found over a limited range of luminance or spatial
frequencies, respectively (Hartwell et al., 1993;McKerral,
Lachapelle, & Benoit, 1992). For example,McKerral,
Lepore, & Lachapelle (2001)have shown that the peak time
of the pattern VEP demonstrates spatial frequency selectiv-
ity while RT does not. Absence of correlation between RT
and VEP measures has also been reported for motion detec-
tion (Kubova, Kremlacek, Szanyi, Chlubnova, & Kuba, 2002)
and for interhemispheric transfer time (Hoptman, Davidson,
Gudmundsson, Schreiber, & Ershler, 1996; Saron & David-
son, 1989; Saron, Foxe, Schroeder, et al., 2003; Saron, Foxe,
Simpson, et al., 2003).
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ticated statistical analyses. The authors found that external
measures of the head were correlated with the cranial capac-
ity, but they accounted for, at most, only 60% of the variance.
Additional studies have shown that the magnitude of the re-
lationship between brain size and head size is even weaker
in females than in males (e.g.Ivanovic et al., 2004; Peters et
al., 1998). Obviously, cerebral tissues and spaces (e.g. skull,
sinus, muscles, fat, epidermal layers) contribute to head size
independently of brain size.

The lack of convergence for a clear relation between brain
size and head measures – in addition to the issues regard-
ing the latency measurement – strongly discredits the NCV
gender-difference reported by Reed et al. The whole point of
their paper is to demonstrate that there is a sex-difference in
the NCV. Yet, nowhere do they demonstrate that their P100
latency is at all responsive to head length independent of sex.
There is no simple regression analysis of head length by la-
tency. For example,Guthkelch, Bursick, & Sclabassi (1987)
found a better correlation of P100 latency with head circum-
ference (interestingly, no significant correlation was found
between P100 and head length) than with gender. Using head
circumference as a predictor of the latency of the P100, the
addition of gender to the regression equation did not improve
the prediction. These results suggest that a major determinant
of differences in the latency of the P100 in adults may well
be head size rather than gender.
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It is therefore clear that the relationship between V
nd RT is not straightforward and certainly not causal.
omparison of these measures between males and fe
s probably even more problematic. In addition to this is
ne might also ask how gender-differences in latency ran

rom 1 to 3 ms (or 0.077–0.082 m/s in NCV) could be link
o gender-differences in RT ranging from 16 to 128 ms
ther words, how does the highest male/female ratio of N
1.044, i.e. 4.4% faster for males) account for the highes
io of RT (1.18, i.e. 18% faster for males)? In addition to
utative anatomical determinants, many other factors su
ractice (manual abilities, video gaming history, etc.), at

ion and/or cognitive strategies could account for the faste
ommonly found in males (e.g.Adam et al., 1999; Donchin,
itter, & McCallum, 1978).

. Alternative interpretations of Reed et al. findings

It is commonly assumed that head size reflects brain
me. However, the relationship between the actual brain
nd the cranial measures is quite questionable (Peters et al
998). For instance,Simmons (1942)showed that the bra
olumes of human subjects (males) with identical len
readth and height measurements of the cranium could
y more than 225 cm3 in brain volume. Conversely, he al
howed that similar cranial capacity measures were obt
or skulls with very different external measurements. Sim
iscrepancies have been observed byFriedman, Wiecher
erny, Schulz, & Buckley (2000)based on more soph
s

How can we then account for the results of Reed et
he difference in P100 latency between males and fem
amely a slight advantage for females (100.6 ms ve
02.1 ms in average), is in agreement with previous find
e.g.Celesia, Kaufman, & Cone, 1987; Emmerson-Hanove
hearer, Creel, & Dustman, 1994). However, the nature o

his difference is unclear. One explanation might be foun
he actual brain volume (which cannot be reliably estim
rom cranial measures as detailed above). Indeed, the av
emale brain weighs approximately 100–150 grams (a
0–12%) less than the male brain (seePeters, 1991; Peters
l., 1998). Based on the assumption that any pathway o
rain varies in length as the cube root of the brain vol
Schmidt-Nielsen, 1975), one can speculate that the puta
horter visual pathway length in the female brain could
ount for shorter latencies in the VEP (Allison, Wood, &
off, 1983). Another complementary possibility is the flu

uation of the VEP latency in females as a function of
onal levels (La Marche, Dobson, Cohn, & Dustman, 19;
hushtarian & Yahyavi, 1999; Yilmaz, Erkin, Mavioglu, &
ungurtekin, 1998). It has been suggested that estrogen fa

ates synaptic transmission along the optic pathways (Yilmaz
t al., 1998). As such, the faster visual transmission t
bserved in females during the ovulatory phase can b

ributable to the high concentration of estrogen during
eriod (Shushtarian & Yahyavi, 1999; Yilmaz et al., 1998).

nterestingly, the corollary is that the putative male/fem
ifference for latency would disappear during other pha

The data of Reed et al. show that the head size v
ystematically by sex (11 mm or 5.9% different,p < 0.0001)
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which is also in accordance with the literature. As a conse-
quence, the ratio head length/P100 latency will systematically
vary by sex even if there is weak or no difference in P100 la-
tency (the actual observed latency sex-difference was 1.6 ms
or an average of 1.5%). As such, the gender-difference found
by the NCV calculation is largely attributable to the head
length size per se, i.e. to the numerator of the ratio, and not to
the latency of P1. Since the idea by which the latency of the
P100 is directly related to the length of the visual pathway is
false, the findings of Reed et al. cannot be linked together and
have to be considered separately: On the one hand, there is
a significant difference between males and females for head
size, and on the other hand, there is a significant difference
in the latency of P100.

6. Conclusions

We believe that the NCV measure is an oversimplification
and ultimately a misleading concept to account for visual
transmission in the human brain. We contend that such a cal-
culation cannot reasonably be performed from human scalp-
recordings. Considering the limitations of the visual NCV
measure discussed above, it is not surprising that reports of
NCV data have not been common in the literature to date, with
the exception of the studies byReed et al. (2004)andReed
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